Caproic Acid Synthesis

In this lab, caproic acid was synthesized in a multi-step process that involved the synthesis of three intermediates – diethyl n-butylmalonate, potassium n-butylmalonate, and n-butyl malonic acid respectively. An IR was used to characterize the starting material, n-bromobutane, and the first intermediate, diethyl n-butylmalonate; while IR and NMR were used to characterize the final product, caproic acid. Reactions, Mechanism and Theory Caproic acid a. k. a n-hexanoic acid is a carboxylic acid derived from hexane which has the general formula C5H11COOH.It is a colorless oily liquid with a really pungent odor associated with goats.
Caproic acid was synthesized in a multi-step process which produced three intermediates – diethyl n-butylmalonate, potassium n-butylmalonate, and n-butyl maonic acid. The synthesis of caproic acid involved alkylation, saponification, and decarboxylation reactions. The first intermediate, diethyl n-butylmalonate – a diethyl ester of malonic acid – was synthesized via an alkylation reaction. Alkylation reactions involve the formation and alkylation of an enolate. In this lab, NaOEt, a strong base was used to pull off one of the most acidic ? hydrogens of the carbonyl ester – diethylmalonate – to form an enolate. In order to alkylate the alpha position which now has a negative charge, the enolate was used to attack an alkyl halide, 1-bromobutane via Sn2 mechanism. The mechanism for the above reaction is shown below: The second intermediate, potassium n-butylmalonate, was synthesized by saponification of the first intermediate, diethyl n-butylmalonate, with potassium hydroxide.
The hydrolysis of diethyl n-butylmalonate resulted in the formation of potassium n-butyl malonic acid by losing the ethoxy group (-OCH2CH3) from both sides of the carbonyl ester.Further deprotonation of the formed acid by -OCH2CH3 forms a carboxylate, potassium n-butylmalonate. The mechanism for the above process is shown below: N-butyl malonic acid, the third intermediate, was immediately synthesized from the potassium n-butylmalonate by the protonation of potassium n-butylmalonate via the addition of excess HCl as shown below: The final step of this lab involved the decarboxylation of n-butyl malonic acid to form caproic acid. Decarboxylation is the removal of a carboxyl group, -COOH, from a carbonyl compound to form CO2 and an enol which further tautomerizes to form a ketone.In this lab, the removal of a -COOH from the n-butyl malonic acid formed 1,1-dihydroxy-hex-1-ene. Tautomerization of this product leads to the formation of caprioc acid. the above reaction mechanism is shown below: Reagent Tables Table 1: Synthesis of diethyl n-butylmalonate (Reagents and Product) Name| Chemical Formula| Molecular Weight| Density(g/ml)| Conc(M)| Amount(g or ml)| Amount(moles)| Melting Point(0C)| Boiling Point(0C)| Sodium Ethoxide| NaOEt| 68.

05| 0. 868| | 50ml9. 1187g| . 134| 260| —| Diethyl malonate| | 160. 17| 1. 055| | 20. 34ml21.
46g| . 134| -50| 199| 1-Bromobutane| n-BuBr| 137. 2| 1. 270| | 14. 5ml18. 36g| . 134| 1.
2686| 101. 4| Absolute Ethanol| EtOH| 46. 07| 0. 789| | 35ml| | -114. 3| 78. 4| Ether| Et2O| 74. 12| 0.
7134| | | | -116. 3| 34. 6| Water| H2O| 18. 1| 1000| | | | 0| 100| Magnesium sulfate| MgSO4| 120. 415| 2. 66| | | | 1124| —| Diethyl n-butylmalonate| C11H20O4| 216. 28| 0.
983| | | | —-| 235 -240| Table 2: Synthesis of Potassium n-butylmalonate (Reagents and Product) Name| Chemical Formula| Molecular Weight(g/mol)| Density(g/ml)| Conc(M)| Amount(g or ml)| Amount(moles)| Melting Point(0C)| Boiling Point(0C)| Diethyl n-butylmalonate| C11H20O4| 216. 8| 0. 983| | | | —| 235 -240| Potassium hydroxide| KOH| 56. 11| 2. 044| | | | 420| 1327| Water| H2O| 18. 1| 1000| | | | 0| 100| Sodium Chloride| NaCl| 58. 443| 2.
165| | 35ml| | 801| 1413| Potassium n-butylmalonate| | | | | | | | | Table 3: Synthesis of n-Butyl malonic Acid (Reagents and Product) Name| Chemical Formula| Molecular Weight(g/mol)| Density(g/ml)| Conc(M)| Amount(g or ml)| Amount(moles)| Melting Point(0C)| Boiling Point(0C)| Potassium n-butylmalonate| | | | | | | | | Hydrochloric acid| HCl| 36. 46| 1. 180| | | | -27. | 110| Ether| Et2O| 74. 12| 0. 7134| | | | -116. 3| 34.
6| Magnesium Sulfate| MgSO4| 120. 42| 2. 66| | | | 1124| —-| n-Butyl malonic acid| C7H12O4| | | | | | | | Table 4: Synthesis of Caproic Acid (Reagents and Product) Name| Chemical Formula| Molecular Weight(g/mol)| Density(g/ml)| Conc(M)| Amount (g or ml)| Amount (moles)| Melting Point (0C)| Boiling point(0C)| n-Butyl Malonic Acid| C7H12O4| 160. 17| —-| | | | 102-105| —| Caproic Acid| C6H12O2| 116. 16| 0. 920| | | | -3| 202-203|Procedure: * Synthesis of Diethyl n-butylmalonate (IV) 0mL of NaOEt and a magnetic stirring bar were added to a dry 250mL round bottom flask fitted with a condenser, a calcium chloride drying tube, and a separatory funnel which was attached to the set-up using a Claisen adapter. 20.
34mL of diethyl malonate was added to the solution via the separatory funnel over a period of about fifteen minutes. Next, 35mL of EtOH and 14. 5mL of n-BuBr were added to the mixture respectively. The solution was refluxed for 10 minutes using a heating mantle and then cooled on ice. The above mixture was later poured into 200ml of water and then transferred to a 500mL separatory funnel. 0mL of ether was used to extract the mixture first and then 20mL of ether each was used to extract the aqueous layer four more times. The organic layers were then combined and dried with MgSO4.
The mixture was filtered and then evaporated to ~100mL. The final solution was then transferred to a 250mL round bottom flask and simple distillation was carried out. After ether and ethanol had distilled off, the diethyl n-butylmalonate was collected. When the distillation temperature reached ~90, the process was stopped and the synthesized diethyl n-butylmalonate was stored in the round bottom flask.An IR of the starting materials, diethyl malonate and n-BuBr, and the product diethyl n-butylmalonate were run. * Synthesis of potassium n-butylmalonate The diethyl n-butylmalonate was transferred to a small separatory funnel and a condenser, stir bar, Claisen adapter and the separatory flask was attached to the 250mL distillation flask. A solution of 30g KOH in 30mL of water was prepared and this solution was added to the distillation flask.
~5ml of the diethyl n-butylmalonate ester was added to the solution via the dropping funnel and the mixture stirred for 5mins, the remaining ester was then added at a rapid dropwise rate.When addition was complete, the mixture was refluxed on a heating mantle for 45 minutes, and then poured into 90mL of cold water. The mixture was then cooled on ice and NaCl was added until the mixture became saturated. * Synthesis of n-Butyl malonic acid 6M HCl was added to the resulting mixture of potassium n-butylmalonate and the mixture was tested frequently using Congo Red paper until the pH was less than 1. After an oily layer formed, the water layer of the mixture was extracted four times with 30mL Et2O. The ether layers were then combined, dried over MgSO4 and filtered using gravity filtration. Synthesis of Caproic Acid: The n-butyl malonic acid synthesized from the previous lab was poured into a 250mL round bottom flask.
Simple distillation of the mixture was carried out. Ether and ethanol respectively were among the first to be distilled. Finally, decarboxylation was observed, caproic acid formed and was collected using 50ml round bottom flask and a stopper. Figure 1: Gas Trap Figure 2: Simple Distillation Apparatus Results * Synthesis of Diethyl n-butyl malonate: Addition of diethyl malonate to the yellow NaOEt solution formed a white solid.When EtOH was added to the mixture, the white solid dissolved, and with the addition of n-BuBr, the liquid mixture turned yellow. During reflux however, the mixture changed to white. Extraction with ether separated the yellow organic layer from the clear aqueous layer.
During simple distillation, Et2O distilled first at ~35oC, followed by EtOH at ~76oC. At ~88oC, only a very small amount of yellow liquid was left in the boiling flask. The yellow liquid also had a slight pungent odor. The yellow product was weighed to be 15. 40g: Boiling flask with mixture = 143. 61g Flask only = 128. 1g Product= 143.
61 – 128. 21 = 15. 40g The IR results of the reactants (n-BuBr and diethyl malonate) and the product (Diethyl n-butyl malonate) are shown below. IR for n-BromoButane Wavelength (cm-1)| Functional Group| Peaks at 2961. 35, 2934. 24 and 2873. 78| Alkyl Csp3 – H| IR for Diethyl malonate Wavelength (cm-1)| Functional Group| Broad peak at 2985.
11| Alkyl Csp3 – H| 2 peaks overlapped at 1741. 28| Carbonyl Ester| Long peak at 1037. 03| Csp3 – O| IR for Diethyl n-Butylmalonate Wavelength (cm-1)| Functional Group| Long peak at 1733. 86| Carbonyl Ester| Peaks at 2873. 67, 2935. 54, 2960. 6| Alkyl Csp3 – H| * Synthesis of Potassium n-Butylmalonate and n-Butyl malonic acid Mixture of 29.
99g of KOH and ~30mL of H2O produced a clear hot mixture. Addition of the KOH and H2O mixture to the yellow liquid synthesized above resulted in no color change. During reflux, no change was observed on the refluxing mixture; however, a really pungent odor could be smelled. Addition of NaCl to the mixture after resflux, produced no observable changes either. Addition of excess 6M HCl formed an oily yellow layer and when the mixture was tested with Congo Red paper, the paper turned deep blue.The mixture was extracted four times with ether and the volume of the combined ether layers was approximately 120mL. Addition of MgSO4 showed no observable change.
* Synthesis of Caproic Acid: IR for Caproic Acid Wavelength (cm-1)| Functional Group| Peak at 3293. 07| O-H of carboxylic compound| Peak at 2959. 66| Alkyl Csp3 – H| Peak at 1710. 14| Carbonyl Caboxylic acids| NMR for Caproic Acid Chemical Shift (ppm)| Functional Group| 0. 902| | | | | | Discussion References Reagent table http://www. chemblink. com/products/133-08-4.

Order a unique copy of this paper
(550 words)

Approximate price: $22

Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
The price is based on these factors:
Academic level
Number of pages
Order your essay today and save 25% with the discount code: THANKYOUPlace Order